
Solution Dominance over Constraint Satisfaction
Problems

Tias Guns1, Peter J. Stuckey2, and Guido Tack2

1 VUB Brussels, Belgium
tias.guns@vub.be

2 Data61 CSIRO & Monash University, Australia
pstuckey@unimelb.edu.au

guido.tack@monash.edu

Abstract. Constraint Satisfaction Problems (CSPs) typically have many
solutions that satisfy all constraints. Often though, some solutions are
preferred over others, that is, some solutions dominate other solutions.
We present solution dominance as a formal framework to reason about
such settings. We define Constraint Dominance Problems (CDPs) as
CSPs with a dominance relation, that is, a preorder over the solutions
of the CSP. This framework captures many well-known variants of con-
straint satisfaction, including optimization, multi-objective optimization,
Max-CSP, minimal models, minimum correction subsets as well as opti-
mization over CP-nets and arbitrary dominance relations.
We extend MiniZinc, a declarative language for modeling CSPs, to CDPs
by introducing dominance nogoods; these can be derived from dominance
relations in a principled way. A generic method for solving arbitrary
CDPs incrementally calls a CSP solver and is compatible with any exist-
ing solver that supports MiniZinc. This encourages experimenting with
different solution dominance relations for a problem, as well as comparing
different solvers without having to modify their implementations.

1 Introduction

Constraint satisfaction has proven to be an indispensable paradigm for solv-
ing complex problems in A.I. and industry. Indeed, many such problems can
be expressed as a conjunction of constraints over variables, including logical
constrains, mathematical relations and sophisticated global constraints such as
automata.

However, for many applications, the true problem to be solved is not a sat-
isfaction problem, though satisfaction is a critical component. For example, in
many cases one is interested in finding a solution that minimizes an objective
function, rather than any satisfying solution. Many other settings exist in which
some satisfying solutions are more interesting or preferred than others, that is,
some solutions dominate other solutions.

We introduce solution dominance as a way to express such dominance rela-
tions over the solutions of a CSP. A dominance relation here defines a preorder

over the solutions. In line with Constraint Satisfaction Problems and Constraint
Optimization Problems, we call the resulting problems Constraint Dominance
Problems (CDPs). The goal is to find all non-dominating solutions to the CDP,
that is, the Pareto optimal set. We discuss two variants, depending on whether
equivalent solutions are allowed in the solution set or not.

Our work generalizes the work on preferences in SAT [7], where a strict par-
tial order over literals is used. This captures MinOne, MaxSAT and Minimum
Correction Subsets. Our work generalizes this and other works expressing pref-
erence as strict (irreflexive) partial orders, because: 1) (reflexive) preorders give
us the freedom to reason both about solution sets that do or do not allow for
equivalent solutions; 2) the goal is not to find all dominated (preferred) solutions,
but rather all non-dominated solutions; hence 3) the investigated approach also
capture multi-objective optimization and more. The set of non-dominated so-
lutions is known as the Pareto frontier or the efficient set in multi-objective
optimization [9] and our formalization is inspired by that, but can reason over
arbitrary partial orders.

Preferences in SAT [7] are methodologically different from preferences ex-
pressed through Conditional Preference networks (CP-nets, [1]), because the
latter requires expensive dominance checks. We investigate a novel dominance
relation for CP-nets, and show that all these types of preferences can fit in the
same framework and methodology. The framework can also express arbitrary
solution dominance relations, including other forms of conditional preferences
than CP-nets. This is motivated by recently studied data mining problems in-
volving conditional dominance relations over CSPs [20]. A further discussion of
related work is provided in Section 7.

Inspired by declarative languages for modeling CSPs [21, 10, 28] we propose
an extension to the MiniZinc modeling language that enables the formulation of
CDPs. The idea is to specify a dominance nogood, a constraint pattern that can
be used whenever a solution is found during search to exclude dominated solu-
tions in the remaining search (analogous to the well-known branch-and-bound
approach for optimization). Dominance nogoods can be derived from the solution
dominance relation in a principled way. We present an intuitive implementation
of a generic algorithm for dominance nogoods in the MiniSearch [24] meta-search
language. We explore the possibilities of this approach on a number of problems
and with a range of different solvers to show the potential of such a generic
approach.

2 CSPs and solution dominance

Conceptually, solution dominance can be used to solve problems of the form:
find {X ∈ S|@Y ∈ S...} where S is the set of all solutions of a CSP.

A Constraint Satisfaction Problem (CSP) is a triple (V,D,C) where V is a
set of variables, D is a mapping from variables to a set of values, and C is a set
of constraints over (a subset of) V . Constraints can represent arbitrary complex
relations over the variables. A valuation X is a mapping of variables to values:

2

∀v ∈ V : v 7→ D(v). A solution of CSP (V,D,C) is a valuation X that satisfies
each constraint c ∈ C. We denote by X(v) the value of v in solution X.

Dominance relation. A dominance relation over CSP solutions expresses when
one solution dominates or is equivalent to another one. A simple example is that
of a constrained optimization problem, where the optimization function defines
a total (pre)order on the solutions. We follow the optimisation convention that
smaller is better.

We define a dominance relation � as a preorder over the set of solutions of a
CSP P . A preorder is a reflexive (a � a) and transitive (a � b ∧ b � c→ a � c)
relation. It can be thought of as a partial order over equivalence classes. In
other words, given two solutions either one dominates the other, or they are
equivalent, or they are incomparable. The use of (reflexive) preorders instead
of (irreflexive) partial orders allows us to discriminate between incomparable
and equivalent solutions. This is also a key difference between the problem of
finding all dominant/preferred solutions and all non-dominated solutions: neither
of two equivalent solutions is strictly dominant, while both are non-dominant;
incomparable solutions are also non-dominant.

More formally, we define the equivalence relation X ∼ Y ⇔ X � Y ∧X � Y ;
and the negations � and �. Now, let S be the set of all solutions of a CSP, and
� a dominance relation. We identify three possible properties for sets A ⊆ S:

complete: every solution in S is dominated by or equivalent to a solution in A:
∀X ∈ S,∃Y ∈ A : Y � X.

domination-free: the solutions in A are not dominated by any other in A,
except equivalent ones: ∀X,Y ∈ A : Y � X ∨ X ∼ Y . Equivalently, no
X ∈ A is strictly dominated: ∀X ∈ A,@Y ∈ A : Y � X ∧X � Y .

equivalence-free: no two solutions in A are equivalent to each other: ∀X,Y ∈
A : X � Y . In preference terms, they are indifferent to each other.

The set of complete and domination-free solutions is unique and defined as
follows: {X ∈ S | ∀Y ∈ S, Y � X ∨X ∼ Y }. In the multi-objective optimization
literature [9], this set is known as the Pareto frontier or the efficient set. In that
context it is often written in the form {X ∈ S | @Y ∈ S : Y � X ∧X � Y }.

In practice though, one is typically just interested in a complete and domination-
free set that is also equivalence-free: A ⊆ {X ∈ S | ∀Y ∈ S, Y � X ∨X ∼ Y }
with ∀X,Y ∈ A : X � Y . This set is not unique (it contains one arbitrary
solution per equivalence class).

3 Constraint Dominance Problems

We now show how a wide range of problems that are not captured by the classical
CSP framework can be expressed with a dominance relation over a CSP. Generic
solving methods are discussed in the next section.

A Constraint Optimization Problem (COP) is typically defined as a tuple
(V,D,C, f) where (V,D,C) is a CSP as defined before and f is a function

3

over a valuation of the variables V . A solution to a COP is a solution to the
corresponding CSP that minimizes the function f . One is typically interested in
finding one such optimal solution, that is, one solution V ∗ of (V,D,C) for which
@V ′ : f(V ′) < f(V ∗).

In line with COPs we define a Constraint Dominance Problem (CDP) as
a tuple (V,D,C,�) where (V,D,C) is a CSP and � a dominance relation. Two
types of queries exist for this problem (with or without equivalent solutions).
We call the full solution to the CDP the set of complete and domination-free
solutions of the CSP. A (non-unique) complete and domination-free set that is
also equivalence free is simply called a solution to the CDP.

Optimization. Given a COP (V,D,C, f), let �f be the total order correspond-
ing to f : X �f Y ⇔ f(X) ≤ f(Y). Then, finding a solution to the COP
corresponds to finding a solution to the CDP (V,D,C,�f).

Lexicographic optimization. Let (V,D,C) be a CSP and F a set of functions
{f1, . . . , fn}. The goal is to find a solution that lexicographically minimizes
the functions. Given the preorder �lexF

: X �lexF
Y ⇔ f1(X) < f1(Y) ∨

(f1(X) = f1(Y) ∧ f2(X) < f2(Y) ∨ (. . . ∧ fn(X) ≤ fn(Y))). A solution to
the CDP (V,D,C,�lexF

) is a lexicographically optimal solution.
Multi-objective optimization. The goal in multi-objective optimization is to

find all Pareto optimal (non-dominated) solutions given a set of functions.
Let �F be the following preorder: X �F Y ⇔ ∀ifi(X) ≤ fi(Y).

Lemma 1. The full solution to the CDP (V,D,C,�F) corresponds to the
set of all Pareto optimal solutions.

Proof.

{X ∈ S | @Y ∈ S : Y �F X ∧X �F Y }
↔ {X ∈ S | @Y ∈ S : ∀ifi(Y) ≤ fi(X) ∧ ¬(∀jfj(X) = fj(Y))}
↔ {X ∈ S | @Y ∈ S : ∀ifi(Y) ≤ fi(X) ∧ ∃jfj(X) 6= fj(Y)}
↔ {X ∈ S | @Y ∈ S : ∀ifi(Y) ≤ fi(X) ∧ ∃jfj(X) < fj(Y)}

which is the classical definition of multi-objective optimization [9]. �

X -minimal models. Let X ⊆ V be Boolean (0/1) variables of a CSP (V,C,D).
Given a solution X, let posX (X) = {v ∈ X |X(v) = 1} be the variables of X
assigned to 1 in solution X. An X -minimal model is a solution to the CSP
such that there is no solution Y with posX (Y) ⊂ posX (X). The set of all
X -minimal models is: {X ∈ S|@Y ∈ S : posX (Y) ⊂ posX (X)}.
We can define the preorder �X as: X �X Y ⇔ ∀v ∈ X : X(v) ≤ Y (v), that
is, for each variable of X an assignment to false (domain value 0) is preferred
over true (domain value 1).

Lemma 2. The full solution to the CDP (V,D,C,�X) corresponds to the
set of X -minimal models.

4

Proof. Using the same rewriting as for multi-objective optimization, we ob-
tain that the set of non-dominated solutions is:

{X ∈ S | @Y ∈ S : Y �X X ∧X �X Y }
↔ {X ∈ S | @Y ∈ S : ∀v∈XY (v) ≤ X(v) ∧ ∃v∈XX(v) 6= Y (v)}
↔ {X ∈ S | @Y ∈ S : ∀v∈X pos(Y ∩ {v}) ⊆ pos(X ∩ {v})

∧ ∃v∈X pos(X ∩ {v}) 6= pos(Y ∩ {v})}
↔ {X ∈ S | @Y ∈ S : posX (Y) ⊆ posX (X) ∧ posX (X) 6= posX (Y)}

which equals {X ∈ S|@Y ∈ S : posX (Y) ⊂ posX (X)}. �

The concept of minimal models can be extended to non-Boolean CSPs by
defining a total order ≤v over the possible values of each variable v ∈ V , in
line with X(v) ≤ Y (v).

Weighted (partial) MaxCSP. Given a CSP (V,D,C) and a function g : C →
R that represents the weight of a constraint. Let X be a valuation which need
not be a solution to the CSP. The total weight of X is the sum of the weights
of the constraints that are satisfied by X: w(X) =

∑
c∈C,c(X)=true g(c).

The goal is to find an assignment to V that maximizes this weight. As
our dominance relation is over solutions of a CSP, we define a new CSP
(V ′, D′, C ′) as follows: a set of |C| new Boolean variables B is added to
V : V ′ = V ∪ B, and each (soft) constraint is replaced by a reified version:
C ′ = {Bc → c|∀c ∈ C}. Let preorder �g be X �g Y ⇔ w′(g,X) ≥ w′(g, Y),
with w′(g,X) =

∑
c g(c) ∗ X(Bc), then, the weighted MaxCSP problem

(V,D,C) given g is equivalent to the CDP (V ′, D′, C ′,�g). Because �g is a
total order, this is equivalent to a COP over w′.

Valued CSPs. A valued CSP with annotated constraints [26] has a valuation
structure (E,⊕,≤v,⊥,>). Each constraint is mapped to a problem specific
value in E. The values are aggregated using operator ⊕, and ≤v defines
a total over E. Because of the total order, a similar encoding to that for
weighted MaxCSP can be obtained.

Maximally satisfiable subsets. A maximally satisfiable subset M ⊆ C of
(V,D,C) is such that (V,D,M) is satisfiable and adding any other constraint
leads to unsatisfiability: ∀c ∈ C \M : (V,D,M ∪ c) is unsatisfiable. Dually,
we call C \M a minimal correction subset.
Applying the same transformation of (V,D,C) to (V ′, D′, C ′) as for MaxCSP
problems, the goal is to find solutionsX with set posB(X) = {c ∈ C|X(Bc) =
1} of active constraints such that no additional constraints in C can be
added to it: @Y ∈ S : posB(Y) ⊃ posB(X). This corresponds to finding
all B-maximal models. In line with minimal models, we can define the pre-
order X �MSS Y ⇔ ∀c ∈ C : X(Bc) ≥ Y (Bc) and corresponding CDP
(V ′, D′, C ′,�MSS).

CP-nets. A CP-net is an acyclic directed graph over a set of variables V [1].
Each node in a CP-net corresponds to a variable Vi and has a conditional
preference table CPT (Vi). A CPT associates with each possible partial val-
uation a of the parent variables in the graph, a strict total order <a

i over

5

V1
// V2

// V3

V1

1 < 0

V1 V2

0 1 < 0 < 2
1 2 < 1 < 0

V2 V3

0 0 < 1 < 2
1 0 < 2 < 1
2 1 < 2 < 0

Fig. 1. CP-net example over 3 variables.

the values of Vi (consistent with the rest of this paper, x < y means x is
preferred over y). Figure 1 shows an example.
A CP-net induces a set of preference rankings that are consistent with all
CPTs, where a preference ranking is a total ordering over all complete val-
uations of V . Traditionally, dominance in a CP-net is defined in terms of
its preference rankings: o dominates o′ if in all of the preference rankings
of the CP-net o is ordered before o′. Even for binary-valued CP-nets, the
complexity of a dominance check for an arbitrary network is NP-hard [1].
An easier to compute query is the ordering query [1]: given two valuations
o and o′, is there a CPT where for all ancestor variables o and o′ have
the same value and o is preferred to o′ according to the CPT: ∃v ∈ V :
(∀w ∈ AncestorN (v), o(w) = o′(w) ∧ o <CPTN (v) o

′)? If so, there must
exist a preference ordering where o < o′ and hence this implies that o′

does not dominate o. It only implies non-dominance though (sufficient but
not necessary), meaning that there may not exists such a CPT and yet
o′ does not dominate o. This is because only CPTs are checked for which
all ancestors have the same value in o and o′; hence there may be a CPT
with AncestorN (v) 6= ParentN (v) that induces preference rankings in which
o < o′ but the CPT is not checked because of the ancestor condition.
We hence propose the following weaker form of CP-net dominance:

Definition 1. Given CP-net N , a valuation o locally dominates o′ iff for all
CPTs: when its parents have equal value in o and o′ but the CPT variable
does not, then o must be preferred to o′ by the CPT;

o ≺N o′ ⇔ ∀v ∈ V : ((∀w ∈ ParentsN (v), o(w) = o′(w) ∧ o(v) 6= o′(v))

→ o <CPTN (v) o
′) (1)

Note that there is always at least one v with corresponding CPT active,
because a CP-net is acyclic and hence there is at least one node with an
empty parent set.

Lemma 3. Local dominance in a CP-net is a necessary but not a sufficient
condition for traditional (preference ranking-based) dominance.

Proof. All preference rankings have to agree with all CPTs. Hence, if o dom-
inates o′ then for all applicable (parent variables equal, current variable not)

6

CPTs: o <CPTN (v) o
′, so local dominance must necessarily be true. However,

if o ⊀N o′ then by negation there must exists a node v with applicable CPT
for which o ≮CPTN (v) o

′ and hence because of o(v) 6= o(v′): o′ <CPTN (v) o.
However, it may still be the case that o dominates o′, because of an interac-
tion between the grandparent variables and CPTs such that no preference
ranking actually uses this entry of CPTN (v). This cannot be observed from
the local CPTs directly, but must be verified through a (NP-hard) dominance
check over the preference rankings.

Definition 2. Because each CPT in a CP-net encodes strict relations, two
valuations can only be equivalent if they are identical: Y ∼N X ≡ Y = X.
We hence define Y �N X ≡ Y ≺N X ∨ Y = X.

Local dominance can be checked in time linear in the number of CPTs in
the CP-net. We can hence realistically use it to enumerate all non-locally-
dominated solutions of a CP-net by solving CDP (V,D,C,�N). The result-
ing solution will be an over-approximation of the actual set of traditional
non-dominated solutions. Should the application demand it, one could still
filter the resulting set by post-processing with the NP-hard traditional dom-
inance check.

Domain-specific dominance relations. We showcase the need for domain-
specific dominance relations in data mining. Increasingly, constraint pro-
gramming is used for data mining problems such as searching for patterns
that appear frequently in a database [13]. A pattern can be a set of items, a
sequence or another structure such as a graph [14]. A pattern is frequent if
it is a subpattern of sufficiently many objects in the database. The problem
is typically encoded as a set of constraints that define the pattern type, and
that define when a pattern is frequent. One solution to this CSP is then one
frequent pattern.
However, there are a number of pattern mining settings that do not fit the
classical CSP framework, most notably closed and maximal patterns, rele-
vant patterns and skyline patterns. Using the concept of dominance though,
these problems can be modeled declaratively and combined with arbitrary
constraints [20].
For example, a frequent pattern is maximal if there is no other frequent
pattern that is a superpattern of this pattern. Let v represent the subpat-
tern relation, e.g. subset, subsequence or subgraph relation depending on
the pattern type. The general dominance relation for maximal patterns is:
X �maximal Y ≡ X w Y . Let S be the set of all frequent patterns, then
the full solutions is {X ∈ S | @Y ∈ S : Y w X ∧ X � Y } ≡ {X ∈
S | @Y ∈ S : Y A X}, the set of all maximally large patterns such that
no other frequent pattern is a superpattern of it. For patterns represented
by a set I, the subpattern relation is the subset relation over I, hence;
{X ∈ S | @Y ∈ S : posI(Y) ⊃ posI(X)}. Note that this is equivalent to
an X -maximal model with X = I.
Closed frequent patterns have the weaker condition that there should not
be a superpattern with the same frequency: dominance relation X �closed

7

Y ≡ X w Y ∧ freq(X) = freq(Y). The resulting full solution set is the
set of all frequent patterns for which no superpattern exists that has the
same frequency: {X ∈ S | @Y ∈ S : Y A X ∧ freq(Y) = freq(X)}, this is
true for all pattern types. An algebra inspired by databases is used in [20] to
show how a number of other pattern mining problems can be expressed as a
combination of a constraint algebra and a dominance algebra. The framework
we propose here focuses on one CSP and one dominance relation, which is
sufficient for most settings.

4 Search and dominance nogoods

The main task that we consider is to find a solution to the constraint dom-
inance problem (V,D,C,�), that is, a complete, domination-free and option-
ally equivalence-free set of solutions. Our methodology is to solve the problem
through a chain of constraint satisfaction problems, similar in spirit to [7].

Let O(V,D,C) be an oracle that returns a satisfying solution to the CSP
(V,D,C) or fails if no such solution exists.

Complete. the following algorithm returns a complete solution to a CSP (V,D,C)
with dominance relation �, using oracle O:

Algorithm 1 search(V,D,C,�,O):

1: A := ∅
2: while S := O(V,D,C) do
3: A := A ∪ {S}
4: C := C ∪ {S � V ∨ S ∼ V }
5: end while
6: return A

Note how on line 4, a constraint is added over variables V such that any
(future) assignment to these variables may not be strictly dominated by the
found solution S. As the constraint set C is monotonically increasing, the oracle
can be incremental in that it can continue its search from where its last solution
was found; the result is a branch-and-bound style algorithm where the bound is
represented by S � V ∨ S ∼ V .

Let 〈S1, S2, . . . , Sn〉 be the sequence of solutions as found by the oracle in
Algorithm 1.

Theorem 1. The set A returned by Algorithm 1 is a complete set: ∀X ∈ (V,D,C),
∃Y ∈ A : Y � X.

Proof. The set is complete: let Px be the CSP (V,D,C) that yields solution Sx,
let S(Px) be the set of all solutions of Px. P1 is the original CSP and hence
S(P1) contains all solutions of the CSP and this set is complete. The subsequent

8

P2 only forbids solutions that are dominated and not equivalent to S1, hence
{S1} ∪ S(P2) is also complete as any solution is either dominated by S1 or in
S(P2). By induction, any set {S1, S2, . . . , Sx} ∪ S(Px+1) is complete. Hence,
S = {S1, . . . , Sn} = {S1, . . . , Sn}∪S(Pn+1) is complete as the stopping criterion
on line 2 dictates that S(Pn+1) = ∅. �

Complete and equivalence-free. Algorithm 1 can easily be modified to return
a complete and equivalence-free set. In this case, line 4 has to be changed to
C := C ∪ {S � V }. This set is equivalence-free as now any solution to S(Px+1)
cannot be equivalent to Sx. The set is still complete as only equivalent solutions
are additionally removed by the modification, and hence for each solution X in
(V,D,C) it will still be the case that ∃Y ∈ A : Y � X.

Domination-free. Any solution Sy found after Sx cannot be strictly dominated
by Sx, as this is explicitly forbidden by the added constraint. That means that
if the oracle enumerates the solutions from most to least preferred according to
the preorder (e.g. first assign variables to 1, then to 0 for MaxCSP), then the
complete and equivalence-free set is also domination-free. This is the approach
used by [7].

However, if we assume no order on the solutions found by the oracle, it is
possible to find, with y > x, an Sy that strictly dominates Sx: Sy � Sx∧Sy � Sx.
We can remove these by doing a backwards pass over the solutions in which we
check for each Sy, Sx, y > x that Sy � Sx∨Sy ∼ Sx and if not we drop Sx. Note
that we reuse oracle O for this though it merely has to check whether a fixed
assignment to the variables satisfies the constraints.

The same procedure can be applied to a complete and equivalence-free set to
make it domination-free; this set is already equivalence-free so the process will
only remove the strictly dominated solutions.

From dominance relation to dominance nogood. We refer to the constraint added
on line 4 of Algorithm 1 as the dominance nogood. It can be derived from the
preorder � in a principled way. We will demonstrate this for a number of earlier
examples.

Since one is often interested in a complete, domination-free and equivalence-
free set, we will demonstrate it for the equivalence-free dominance nogood S �
V . We denote the relation representing the dominance nogood as D(S, V). It
can often be obtained by negating the logical definition of the preorder �. The
dominance nogood with equivalence S � V ∨ S ∼ V can be obtained following
similar methods as well, perhaps more easily in the equivalent form S � V ∨V �
S. Recall that V is the set of variables of the CSP and S is a previously found
solution.

Optimization. For dominance relation X �f Y ⇔ f(X) ≤ f(Y) the domi-
nance nogood is D(S, V) ⇔ ¬(f(S) ≤ f(V)) ⇔ f(S) > f(V) ⇔ f(V) <
f(S). This guarantees that every new assignment to V will have a smaller
score than the previously found solution S.

9

Lexicographic optimization. The dominance relation isX �lexF
Y ⇔ f1(X) <

f1(Y) ∨ (f1(X) = f1(Y) ∧ (f2(X) < f2(Y) ∨ (. . . ∧ fn(X) ≤ fn(Y)))). The
negation is the dominance nogood: D(S, V) ⇔ f1(S) ≥ f1(V) ∧ (f1(S) 6=
f1(V)∨(f2(S) ≥ f2(V)∧(. . .∨fn(S) > fn(V)))). Using the observation that
(A ≥ B)∧ ((A 6= B)∨Z)⇔ (B < A)∨ ((B = A)∧Z) we obtain D(S, V)⇔
f1(V) < f1(S)∨ (f1(V) = f1(V)∧ (f2(V) < f2(S)∨ (. . .∧ fn(V) < fn(S)))).
One could also use a lex_less global constraint.

Multi-objective optimization . The dominance relationX �F Y ⇔ ∀ifi(X) ≤
fi(Y) has the dominance nogood D(S, V) ⇔ ∃ifi(S) > fi(V). Recall that
as in the previous examples, this is the dominance nogood to obtain the
equivalence-free set of complete and domination-free solutions.

X -minimal models We haveX �X Y ⇔ ∀v ∈ X : X(v) ≤ Y (v)⇔ posX (X) ⊆
posX (Y) and dominance nogood D(S, V)⇔ ∃v ∈ X : S(v) > V (v).

Minimal correction subsets We noted earlier that minimal correction sub-
sets is dual to finding the maximal satisfiable subsets, which corresponds
to the problem of finding all maximal models of (V ′, D′, C ′) with X �MSS

Y ⇔ ∀c ∈ C : X(Bc) ≥ Y (Bc). The corresponding dominance nogood is
D(S, V)⇔ ∃c ∈ C : S(Bc) < V (Bc).

CP-nets For CP-nets we have D(S, V)⇔ S 6= V ∧ S ⊀N V ⇔ S 6= V ∧ ∃v :
(∀w ∈ Parents(v), S(w) = V (w) ∧ S(v) 6= V (w) ∧ V <CPT(v) S).

Each line in a CPT is mutually-exclusive, so the relation that V is more
preferred to S according to CPT (Vi), V <CPT(v) S, can be formalized using
a disjunction over all CPT entries. The preference in each entry can be
modeled using implications. For example, for the first entry of CPT (X3)
in Figure 1 as follows: V2 = 0 ∧ S2 = 0 ∧ V3 6= S3 ∧ ((S3 = 2 → (V3 =
1 ∨ V3 = 0)) ∨ (S3 = 1 → V3 = 0)). Indeed, the parents have to take a
specific (identical) value, and in that case if S3 = 2 then V is preferred only
if V3 takes value 1 or 0; if S3 = 1 then V3 must be 0 to be preferred. Because
of the mutual exclusivity and because S is a solution of which we know the
values, when posting the dominance nogood, at most one entry per CPT will
be part of the logical formula.

Complexity. Each time the oracle O is called, it has to solve an NP-hard CSP
(V,D,C) in general. Furthermore, there can be an exponential number of non-
dominated solutions and hence calls to the oracle: there exists a search order
such that the algorithm has to enumerate all solutions to find all non-dominant
ones. Brafman et al [3] show that the simpler problem of computing the next
solution in a CSP or preference problem is in general also NP-hard, although
there are some special cases (like tree CSPs) where it can be easier.

Note that since the constraint system is monotonically increasing, any learned
nogoods from previous runs (from a learning solver [22], or from restarts [18])
are valid, hence each subsequent call to the solve oracle O can take advantage
of them.

10

5 Integration in a modeling language

Any constraint solver that supports incrementally adding constraints and re-
trieving the next solution can implement Algorithm 1. From the modeling per-
spective, we describe how MiniZinc [21], a modeling language for CSPs and
COPs, can be extended to handle CDPs as new modeling primitive.

Instead of extending MiniZinc to express dominance relations, we instead
add syntax for dominance nogoods, for two reasons: 1) users can explicitly
specify either an equivalence-free dominance nogood, or a dominance nogood
with equivalence; 2) we found it more intuitive to declare an invariant for the
search (e.g. minimization as f(V) < f(S) where S is a previously found solution),
rather then declaring when a previous solution dominates or is equivalent to a
new one (e.g. f(S) ≤ f(V)).

MiniZinc has keywords to define variables, constraints, predicates and a min-
imal search specification. We add the keyword dominance_nogood for specifying
dominance nogoods. Furthermore, the built-in MiniSearch [24] function sol(X)

can be used to refer to the value of variable X in a previously found solution.
Hence, the dominance nogood for a minimization problem: D(S, V) ⇔ f(V) <
f(S) can be expressed as:

dominance_nogood f(V) < f(sol(V));

with V some array of variables of the accompanying CSP.
Here is an example for finding minimal correction subsets (note the not in the

output statement, where we convert the maximal satisfiable subset to a minimal
correction subset).

array [int] of var bool: B;

constraint B[1] -> ...;

dominance_nogood exists(i in index_set(B))(B[i] < sol(B[i]));

output ["MCS:"] ++ ["\(i) " | i in index_set(B)

where not fix(B[i])];

5.1 Solving

Algorithm 1 can be specified in a straightforward way using the recently in-
troduced MiniSearch language [24]. MiniSearch is an extension of MiniZinc
with support for specifying meta-level search heuristics. The integration with
MiniZinc allows any existing FlatZinc solver to be used by MiniSearch, and
hence also for solving CDPs.

At the language level, a declaration dominance_nogood e is simply translated
into a predicate declaration predicate post_dng() = e that posts the dominance
nogood. Algorithm 1 is then specified as follows in MiniSearch:

solve search dominance_search;

function ann: dominance_search () =

repeat(if next() then

commit () /\ print () /\ post_dng ()

else break endif);

11

The dominance_search function repeatedly queries a black-box solver for the
next solution (next()), and if a solution is found, it remembers it (commit()),
prints it, and then posts the dominance nogood before continuing to search for
the next solution. In MiniSearch, next() can either call an external solver process
through a file based interface, restarting the search from scratch for each call; or
use an incremental C++ API that permits adding constraints during the search.

6 Experiments

We evaluate the viability of the framework and the opportunities of modeling
constraint dominance problems in a declarative solver-independent language. We
do not aim to beat the state-of-the-art on any one specific task, as they typically
employ specialized bounds or additional inference mechanisms. The experiments
below evaluate different categories of dominance nogoods and show that they can
be handled through the generic framework presented in this paper, including the
novel setting of optimizing over CP-nets using generic CSP solvers.

The experiments use MiniSearch with the following solvers: Gecode 4.4.0
(gecode), or-tools v2015-09 (ortools), Opturion CPX 1.0.2 (optcpx) and Chuffed
b776ac2 (chuffed). Gecode and or-tools are classical depth-first search CP solvers,
while Opturion CPX and Chuffed are lazy clause generation solvers [22]. All
solvers are called by MiniSearch as external processes using the standard file-
based interface. Gecode additionally supports the direct, incremental C++ API
(gecode-api).

6.1 MaxCSP

We use benchmarks from the 2008 XCSP competition, MaxCSP with globals
category. Table 1 shows a comparison of MiniSearch with different solvers on a
selection of instances. For each solver, we compare a model where no variable
order is given (’free’) with the specification of a most-to-least preferred strategy
over the B variables only (’ord’, e.g. assign to 1 before 0). The latter forces the
solvers to first consider all constraints, then all but one (arbitrary) constraint,
and so on.

We can see in Table 1 that providing the search order often leads to improved
runtimes, but not always (quasigrp for gecode, cabinet for chuffed). gecode is
slower than the incremental API approach gecode-api in case an order is given;
when doing free search, the restarts of the file-based approach seem to improve
runtime for q13 (and others, not shown). The remaining solvers seem to handle
this task pretty well, especially optcpx. For a rough comparison, in the 2008 com-
petition the quasigrp and latinSq instances were also solved within seconds,
however runtimes of 600+ seconds were reported for cabinet and 40+ seconds
for q13.

12

Table 1. MaxCSP runtimes in seconds, — timed out after 30 min.

Instance gecode-api gecode ortools chuffed optcpx
free ord free ord free ord free ord free ord

cabinet-5570 — 0.9 — — 36 0.2 257 — 3.9 0.3
cabinet-5571 — 0.9 — — 36 0.2 257 — 3.9 0.4
latinSq-dg-3 all 0.2 0.1 0.5 0.3 0.1 0.1 0.2 0.3 0.1 0.1
latinSq-dg-4 all 0.6 0.9 0.8 6.8 0.5 1.3 0.5 13 0.6 0.3
quasigrp4-4 46 — — — 4.5 — 3.8 18 1.4 7.7
quasigrp5-4 0.4 1651 1158 — 1.1 — 1.6 5.4 1.6 1.3
q13-1110973670 479 1.1 32 0.9 540 0.7 635 43 11 7.5
q13-1111219348 569 1.1 32 1.3 385 0.9 641 72 8.8 7.0

6.2 Multi-objective

We consider traveling saleseman problems where two different costs are given
between any two cities, e.g. duration and fuel cost. We report on the generation
of all complete and equivalence-free solutions. The straightforward backward pass
needed to make the set domination-free is omitted for reasons of simplicity. The
instances are from the Oscar repository [23].

In Table 2 we compare the MiniSearch approach with different solvers and
Oscar [23], which has an efficient dedicated propagator for multi-objective op-
timisation [15]. The first three lines use the first-fail variable ordering used in
Oscar, the last three use a max-regret ordering over the distance variables, as
found in MiniZinc’s TSP models. The gecode-api results indicate that file-based
restarts lead to much slower solving times. The number of intermediate solutions
also has a big influence on runtime, as using a better variable order leads to both
smaller solution sets and smaller runtimes.

6.3 CP-net

The following experiments consider a variant of the Photo problem, where the
goal is to find an ordering of friends such that the number of preferences regarding

Table 2. Runtime and number of solutions (forward pass) for multi-objective opti-
mization; — indicates time out after 30 min; n.a. that the search strategy was not
supported

Instance gecode-api gecode ortools chuffed oscar
time sols time sols time sols time sols time sols

ren10 0.5 108 7.5 108 6.8 108 38 105 2.3 110
ren15 368 949 — 545 – 565 — 343 61 891
ren20 — 998 — 382 – 392 — 381 — —

ren10-mg 1.8 41 2.8 41 1.3 45 5 38 n.a. n.a.
ren15-mg 14 135 247 135 541 145 — 128 n.a. n.a.
ren20-mg — 925 — 292 — 294 — 171 n.a. n.a.

13

Table 3. CP-net photo-like setting, runtimes and number of solutions (forward pass),
— indicates timeout after 30 min.

Instance gecode-api gecode ortools chuffed optcpx
time sols time sols time sols time sols time sols

10v-4p-1 109 76 126 78 144 81 110 61 192 112
10v-4p-2 14 14 46 43 17 16 7 7 20 18
10v-4p-3 31 29 51 43 14 12 80 57 78 61
10v-4p-4 397 673 782 285 496 331 547 378 — 753
10v-4p-5 15 68 101 289 34 95 14 42 24 76

whom to stand next to for a group photo is maximized. We here consider the
case that preferences are supplied as a CP-net: each person indicates a number
of people (parents in the CP-net) and their preferences considering the locations
of these people. Such a CP-net can be partial, i.e., it can contain disconnected
components, which our method can handle without any modification.

We randomly generated CP-nets with n people (5 ≤ n ≤ 20) and for each
person between 0 and k parents (sampled uniformly per person, 1 ≤ k ≤ 10). The
induced order in the CPTs corresponds to preferring smaller average distance to
the parent(s). We again report only the forward pass of computing all complete
and equivalence-free solutions. Larger n and larger k lead to larger CP-nets and
runtimes, though that depends very much on the actual CP-net generated.

Table 3 shows results on 5 different networks generated with n = 10 and
k = 4. No variable/value ordering strategy was imposed. The number of solutions
found clearly has an influence on runtime, where the number of solutions is not
only specific to the problem at hand, but also to the search order chosen by
the solver. We expect a method that uses the expensive (traditional) dominance
checks to perform worse.

7 Related Work and discussion

As discussed in the introduction, most related is the work on preferences in
SAT [25, 7], where a preference can be defined over individual literals. They
identify preference formulas for these tasks, which correspond to dominance
nogoods, and use incremental SAT solving. Our framework generalizes this to a
wider range of tasks and different solving technology.

As with any generic method, one cannot expect to obtain the most efficient
method for each of the covered tasks. Indeed, specialized methods have been de-
veloped for MaxSAT [6], minimum correction subsets [19] and X-minimal mod-
els [29] that can be more efficient than a SAT with preferences approach, but
only for their specific task. For multi-objective optimization in CSPs, specialized
propagation algorithms exist that filter the search space more effectively [11, 15].
Similarly for other forms of preference [17].

Nevertheless, recent applications of data mining using SAT [16] and CSP [20]
demonstrate the need for generic methods for handling novel solution dominance
settings, for example involving conditional dominance relations.

14

Many works in CP-nets focus on consistency and dominance testing [8, 1,
2]. A branch-and-bound style algorithm for finding all non-dominated solutions
given additional constraints has been studied [2]; it uses expensive (PSPACE
complete [12]) dominance checks in case the ordering query returns false. Fur-
thermore the search (variable order) in their method is driven by the CP-net’s
structure. In contrast, our method proposes a novel dominance relation that is
cheap to evaluate and provides an over-approximation; it can be used with any
existing solver and for any variable order.

A recent extension of Answer Set Programming [4] covers some of the tasks
in this paper too (no CP-nets or domain-specific relations), but within the stable
model semantics. They provide a language extension for expressing preference re-
lations with a preference type (e.g. less, subset, pareto) and preference elements
(the variables). Our language extension is closer to the original dominance rela-
tion which can make it easier to specify domain-specific dominance nogoods.

The concept of dominance is also used in different contexts in the constraint
programming community. Dominance breaking [5] for COPs creates constraints
that, given a mapping σ, prevent the finding of solutions θ such that σ(θ) is a
better solution of the COP. They can drastically improve solving performance.
[5] rely on a notion of dominance relation that applies to all valuations and not
just solutions, so that sub-trees can be pruned during the search. In that sense
they are complementary to the solution dominance we consider in this paper.
Indeed an interesting direction for further work is to extend dominance breaking
to arbitrary solution dominance problems.

8 Conclusions

We introduced the concept of solution dominance, where the dominance rela-
tion is a preorder over the solutions of a CSP. We call the resulting problems
Constraint Dominance Problems, and this captures single/lexicographic/multi-
objective optimization, X-minimal models, weighted MaxCSP, minimum correc-
tion subsets as well as a novel dominance relation for reasoning over CP-nets,
as well as other dominance relations. We provide a natural and declarative ex-
tension to MiniZinc for specifying Constraint Dominance Problems, based on
MiniSearch.

Preferences and (solution) dominance have a history in CP research, as dis-
cussed above. Two directions for future work hence emerge: 1) which other pref-
erence [17] or dynamic solving settings [27] fit the solution dominance frame-
work; and 2) what specialised solving methods that have been investigated for
one category (e.g. MaxCSP or Multi-objective) can also be applied to other set-
tings? From a modeling perspective one can also ask the question whether it
can be automatically detected from a dominance nogood specification, that a
more specialised algorithm could be used (e.g. for lexicographic or bi-objective
optimisation).

15

References

1. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

2. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Preference-
based constrained optimization with cp-nets. Computational Intelligence 20, 137–
157 (2004)

3. Brafman, R., Rossi, F., Salvagnin, D., Venable, K., Walsh, T.: Finding the next so-
lution in constraint- and preference-based knowledge representation formalism. In:
Proceedings of the Twelfth International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR2010). pp. 425–433. AAAI Peess (2010)

4. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer
set preferences without a headache. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.
pp. 1467–1474 (2015)

5. Chu, G., Stuckey, P.J.: Dominance breaking constraints. Constraints 20(2), 155–
182 (2015)

6. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Theory
and Applications of Satisfiability Testing - SAT 2013 - 16th International Confer-
ence, Helsinki, Finland, July 8-12, 2013. Proceedings. pp. 166–181 (2013)

7. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with
preferences. Constraints 15(4), 485–515 (Oct 2010)

8. Domshlak, C., Brafman, R.I.: Cp-nets - reasoning and consistency testing. In: In
Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning. pp. 121–132. Morgan Kaufmann (2002)

9. Ehrgott, M.: Multicriteria optimization. Lecture Notes in Economics and Mathe-
matical Systems, Springer-Verlag (2000)

10. Frisch, A., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence: A
constraint language for specifying combinatorial problems. Constraints 13(3), 268–
306 (2008)

11. Gavanelli, M.: An algorithm for multi-criteria optimization in csps. In: Proceedings
of the 15th Eureopean Conference on Artificial Intelligence, ECAI’2002, Lyon,
France, July 2002. pp. 136–140 (2002)

12. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational com-
plexity of dominance and consistency in cp-nets. J. Artif. Intell. Res. (JAIR) 33,
403–432 (2008)

13. Guns, T.: Declarative pattern mining using constraint programming. Constraints
20(4), 492–493 (2015)

14. Guns, T., Paramonov, S., Negrevergne, B.: On declarative modeling of structured
pattern mining. In: AAAI Workshop on Declarative Learning Based Programming,
Phoenix, Arizona USA, 12-13 February 2016 (2016)

15. Hartert, R., Schaus, P.: A support-based algorithm for the bi-objective pareto
constraint. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014. pp. 2674–2679. AAAI
Press (2014)

16. Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using
top-k SAT problem. In: Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part III. pp. 403–418 (2013)

16

17. Junker, U.: Preference-based search and multi-criteria optimization. Annals of Op-
erations Research 130(1-4), 75–115 (2004)

18. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007. pp. 131–136 (2007)

19. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013 (2013)

20. Négrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for
itemset mining. In: 2013 IEEE 13th International Conference on Data Mining,
Dallas, TX, USA, December 7-10, 2013. pp. 557–566 (2013)

21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: CP. LNCS, vol. 4741, pp. 529–543.
Springer (2007)

22. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

23. OscaR Team: OscaR: Scala in OR (2015), available from
https://bitbucket.org/oscarlib/oscar

24. Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: A solver-independent
meta-search language for minizinc. In: Pesant, G. (ed.) CP2 015. LNCS, vol. 9255,
pp. 376–392. Springer (2015)

25. Rosa, E.D., Giunchiglia, E., Maratea, M.: A new approach for solving satisfiability
problems with qualitative preferences. In: ECAI 2008 - 18th European Conference
on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings. pp. 510–
514 (2008)

26. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard
and easy problems. In: Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25
1995, 2 Volumes. pp. 631–639 (1995)

27. Ugarte Rojas, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A.: Min-
ing (soft-) skypatterns using dynamic csp. In: Simonis, H. (ed.) Integration of AI
and OR Techniques in Constraint Programming. pp. 71–87. Springer International
Publishing, Cham (2014)

28. Van Hentenryck, P.: The OPL optimization programming language. MIT Press
(1999)

29. Zohary, R.B.E..: An incremental algorithm for generating all minimal models. Ar-
tificial Intelligence 169(1), 1 – 22 (2005)

17

