Half-checking propagators

Mikael Zayenz Lagerkvist![0000—0003—2451-4834] 5y
Magnus Rattfeldt?(0000—0001-5036—3107]

! research@zayenz.se, https://zayenz.se

2 research@rattfeldt.se

Abstract. Central to the success of constraint programming are prop-
agators, contracting functions removing values proven not to be in any
solution of a given constraint. The literature contains numerous prop-
agation algorithms, for many different constraints, and common to all
these propagation algorithms is the notion of correctness: only values
that appear in no solution to the respective constraint may be removed.
In this paper half-checking propagators are introduced, for which the only
requirements are that identified solutions (by the propagators) are actual
solutions (to the corresponding constraints), and that the propagators
are contracting. In particular, a half-checking propagator may remove
solutions resulting in an incomplete solving process, but with the upside
that (good) solutions may be found faster. Overall completeness can be
obtained by running half-checking propagators as one component in a
portfolio solving process. Half-checking propagators opens up a wider
variety of techniques to be used when designing propagation algorithms,
compared to what is currently available.

A formal model for half-checking propagators is given with a detailed de-
scription of how to support such propagators in a system. Three general
ideas for creating half-checking propagators are introduced, each with an
example half-checking propagator for the cost-circuit constraint. The
new propagators are implemented and tested in the Gecode system.

1 Introduction

Constraint programming has been successful in a wide variety of settings, and
central to the success of constraint programming is the multitude of smart and ef-
ficient propagation algorithms devised. Propagation is all about removing values
that are not in any solution to a constraint, and it is what separates constraint
programming from generate-and-test. In constraint programming, we are justi-
fiably proud of being able to effectively combine algorithms from many different
fields implemented as propagators, so that a model effortlessly and without fear
of adverse interactions can use intelligent scheduling algorithms for disjunctive
and cumulative such as not-first /not-last and energetic reasoning, dynamic pro-
gramming algorithms for regular, bin-packing, and knapsack, maximum flow
reasoning for global-cardinality, and arithmetic and Boolean reasoning.
Unfortunately, designing good propagation algorithms is hard. It is hard not
only since the specific problems they model are hard, but they are hard for a

2 M. Z. Lagerkvist and M. Rattfeldt

more fundamental reason. Propagators are required to be correct; a propagator
must never remove a value from a variable that may still be a solution to the
constraint. This means that propagation is not actually concerned with finding
a solution but about proving that no solution exists for a certain variable-value
pair, and that is a subjectively harder problem. The requirement for correctness
also means that there is an upper limit on the amount of propagation that
can be done, and this limit (domain consistency [38]) is often the ultimate goal
when designing a new propagator. Unfortunately, even if a propagator is domain
consistent it does not mean that it performs a high amount of propagation:
perhaps all values can still be part of some solution for the constraint.

In this paper we propose a new type of propagators, that we call half-checking
propagators. By relaxing the requirements of propagators to a bare minimum for
ensuring soundness (found solutions must be constraint solutions), we open up
for a wider variety of techniques that may be used when designing propagation
algorithms. On the downside, such propagators are no longer correct, which
means that the overarching solving process is no longer complete. On the upside,
however, such propagators can deploy new and stronger reasoning (possibly even
stronger than domain consistency), with the hope that the search is then guided
towards promising parts of the search space.

Local search, heuristics, and approximation algorithms are all examples of
incomplete methods, methods that are often geared towards finding good enough
solutions quickly, not a provably optimal solution. In constraint programming,
the most well known and successful incomplete technique is Large Neighborhood
Search [53]. In contrast to LNS, we embrace the incompleteness earlier by lifting
it into the propagators, the heart of a constraint programming solver. Similar
to all incomplete strategies, completeness can be regained by combining with a
complete solution method in a portfolio solver.

Contributions. This paper introduces the novel concept of half-checking propa-
gators, including a formal model, a full exploration on how to integrate into a
realistic system, and how to use in a portfolio solver. Three general techniques for
designing half-checking propagators are defined. For all three, an example prop-
agator using the technique is developed for the cost-circuit constraint. An
implementation in the Gecode constraint programming system has been made.

2 Constraint programming

In order to be clear about the specifics, a formal model of constraint program-
ming is needed, as is knowing the standard requirements on propagators.

2.1 Constraint satisfaction problems

Let P(s) be the power-set of s, that is the set of all subsets of s. The set of
all functions from the set A to the set B is denoted A — B. Let Ax.E be the
function from the argument x to the expression F.

Half-checking propagators 3

A constraint satisfaction problem is defined over a finite set of wvariables
Var = {x1,...,2,} and a finite set of values Val. An assignment a € Asn maps
each variable in Var to a value in Val, Asn = Var — Val. For a set of variables
x C Var, Asn, is the assignments where the arguments are restricted to x,
and a, is similarly an assignment restricted to xz. A constraint ¢ € Con over
variables var(c) C Var is defined as the set of assignments that are solutions
to that constraint: Con = Uzc varP(Asn,). When necessary and without loss
of generality, any constraint is extended to all variables Var by allowing all
combinations of values for the added variables, for all solutions.

A domain d € Dom maps each variable to a subset of the values, Dom =
Var — P(Val). For simplicity, all domains where at least one variable is mapped
to the empty set are equated and represented by the fully empty domain (L =
Az.{}). A domain d induces a set of assignments (asn(d) = {a | Vz.a(z) € d(z)}),
and can thus be considered as a constraint. Set operations and relations are lifted
to domains, constraints and assignments point-wise over the variables.

The domain of a constraint is defined as dom(c) = Az.{v | Ja € c.a(x) = v}.
Note that the domain of a constraint in turn induces a much weaker constraint
than the original. For example, the equality constraint eq for two variables con-
tains just |Val| assignments, while asn(dom(eq)) contains all |Val|? assignments.

A constraint satisfaction problem (CSP) is a tuple (d, C) of a domain d and
a set of constraints C'. An assignment a is a solution to a CSP iff a € d and
Ve € C.a € c. The set of all solutions to a CSP c¢sp is given by the function
sol(csp). A function solve € CSP — P(Asn) finds solutions for a CSP. Such
a function is sound iff solve(csp) C sol(csp) (all solutions found are actually
solution). It is complete iff solve(csp) = sol(csp) (solving finds all solutions).

2.2 Propagators and models

A propagator p for a constraint c is a function® from domains to domains (p €
Dom — Dom), with the following properties.

Contracting Vd € Dom, p(d) C d must hold.

Local Vd € Dom, if & & var(c), then p(d)(z) = d(z).

Checking Va € Asn, p(dom({a})) = dom({a}) iff a € c.

Weakly monotonic Vd € Dom and assignments a € d, p(dom({a})) C p(d).

Contracting means that a propagator only removes values from domains,
never adds values. Local means that a propagator only removes values from the
variables involved in the constraint. Checking means that a propagator recognizes
all solutions to a constraint since no values are removed for those assignments.
Weakly monotonic means that if an assignment is a fix-point of a propagator
(and thus a solution to the constraint), then the propagator does not remove that
assignment from a domain it is in. Any propagator that is weakly monotonic and
checking is correct for its constraint [49], with correct defined as follows.

3 As remarked in [49], propagators do not need to be functions, and can be arbitrary
relations in Dom X Dom, e.g., as a model for randomized propagation. For ease of
explanation and notation, we use functions and leave the generalization unstated.

4 M. Z. Lagerkvist and M. Rattfeldt

Definition 1 (Correct). A propagator p is correct for constraint c, iff
Va € ¢.¥d € Dom.a € asn(d) = a € asn(p(d))

Let the constraint of a propagator p be referred to as c,. A constraint model is
a combination of a domain and a set of propagators (d, P). This is very similar
to a CSP as defined above, and a model can be transformed to a CSP using
esp({d, P)) = (d,{cp|¥p € P}). A CSP defines the semantics of a problem using
an extensional specification, while a model is an intensional specification geared
towards computing solutions to the CSP.

Solving a model is usually done by interleaving fix-point computation of the
propagators with search using heuristic decomposition of the model (branch-
ing or labeling). We leave the details of solving opaque, assuming a function
solve({(d, P)) that returns all solutions that are fix-points of all propagators.

In [49], Schulte and Tack introduced weak monotonicity and showed that the
above properties for propagators4 are necessary and sufficient to get sound and
complete solving when combined with search. It is common to require mono-
tonicity from propagators (Vdy,ds € Dom.d; C dy = p(di) C p(dz)), but this
does not model actual propagators well, since it excludes many types of random
and heuristic propagators. If all propagators are monotonic, then the fix-point
of propagators is unique, regardless of the order propagators are run [33,55].

In practice, a single constraint may be implemented by a set of propagators,
such as n? not equals propagators for an all_different constraint. We will leave
this generalization out of the formalization, but note that it is straightforward.

Given two propagators p; and ps for a constraint ¢, p; is stronger than po
iff for all domains d, p1(d) C pa(d), and for some domain d’, p1(d’) C pa(d’).
A consistency level defines a specific strength of propagation. The strongest
consistency level possible without violating the requirements for a propagator
is domain consistency (also called (generalized) arc consistency, or complete
propagation), where a propagator p removes all values for variables that have no
supporting assignment in the associated constraint (formally, Vd € Dom.p(d) =
dom(asn(d)Necp)). There are other consistency levels defined in the literature, for
example value consistency (also called forward checking), and bound consistency.

2.3 Constraint programming systems

Constraint programming systems are designed to enable the specification and
solving of constraint models. Typical examples include open source solvers such
as Gecode [18], Choco [45], and OR Tools [21] and commercial solvers such as
SICStus Prolog [7] and CP Optimizer [27].

Constraint programming systems contain implementations for

Variables Variables can be Booleans, integers, floats, sets, and so on.
Propagators Propagators are the implementations of constraints. Systems typ-
ically provide many different propagators, for many different constraints.

4 Except local, as their constraints and propagators are defined over all variables.

Half-checking propagators 5

Branching A branching is an implementation of a heuristic, that decides how
to make guesses in a search tree.

Search Search is used to find solutions to models comprised of variables and
propagators combined with branchings. Search methods can be complete
(DFS, Limited Discrepancy Search) or incomplete (Restart based search,
LNS), and can be for satisfaction only or for optimizing..

3 Half-checking propagators

A half-checking propagator® is similar to a traditional propagator, only with less
restrictions: if a solution is detected, then it is correct. In particular, half-checking
propagators are allowed to actually remove solutions. Formally, a half-checking
propagator is a function from domains to domains, with the properties that it
is local and contracting, in addition to the following property:

Definition 2 (Half-checking). The propagator p is half-checking for ¢, if for
all assignments a € Asn, if p(dom({a})) = dom({a}) then a € c.

Half-checking is a natural weakening of checking, where instead of requiring
that all solutions to a constraint are precisely identified and thus the only fix-
points of the function, we only require that fix-points of assignments must be
solutions to the constraint. Also importantly, a half-checking propagator is not
required to be weakly monotonic either. Since weak monotonicity is required for
correctness, a half-checking propagator may actually be incorrect: it may remove
an assignment that it would recognize as a solution.

Example 1. The fail propagator Ad.L is a half-checking propagator for all con-
straints ¢ € Con. Since fail has no fix-points for any assignment, it is trivially
half-checking. It is naturally contracting, as well as local, since all empty/failed
domains are equated. The fail propagator is the strongest propagator possible,
since Vd € Dom. L C d. It is also a rather useless propagator in practice, since
it guarantees that no solution will be found.

Ezxample 2. A propagator for x < y is a half-checking propagator for z < y. This
is easy to verify, since all solutions to the first are also solutions to the second.

Theorem 1. All propagators are also half-checking propagators.
Proof. This follows directly since half-checking is a weakening of checking. O

Theorem 2. Solving a constraint model with half-checking propagators using
solve is sound.

Proof. All returned solutions from solve must be fix-points for all the propaga-
tors (by definition, whether traditional or half-checking). Since the only fix-points
of both traditional and half-checking propagators are solutions to the associated
constraint, the returned assignments are solutions to the model. ad

® The name is inspired by the name half-reification. [14]

6 M. Z. Lagerkvist and M. Rattfeldt

Theorem 3. Solving a constraint model with half-checking propagators using
solve is not complete.

Proof. Given a model (d, P) with at least one solution. We can replace any
propagator p in P with fail from Example 1 as a half-checking propagator for
the constraint c,. With fail in the set of propagators, no solutions are produced
since there are no assignment fix-points for fail. O

4 Integrating half-checking propagators into a system

After defining and describing the theoretical properties of half-checking propa-
gators, it is important to investigate how they can be supported in constraint
programming systems. In most constraint programming systems, propagators
are just components that interact with the current variables, and based on de-
ductions may remove some values from its variables domains.

When implementing a propagator in a typical constraint programming sys-
tem, the properties contracting and local are natural consequences of the pro-
gramming interface: propagators only have access to their variables, and the only
modifications that a propagator can do are removal of values from domains.

As shown in [49], if a constraint programming system uses re-computation [48,
18,42] it may need to make adjustments for weakly-monotonic propagators as
opposed to monotonic propagators. The reason is that running propagation twice
may not give the exact same result, since the fix-point is no longer unique [33, 55].
Typical examples of this might be propagators that use randomized algorithms.
The same situation naturally applies for half-checking propagators, and thus if
the system is set up such that it can handle weakly-monotonic propagators, it
can also handle half-checking propagators.

In addition to supporting half-checking propagators, there are additional
practical concerns that need to be taken into account. When applicable, we
will describe how this is done for the Gecode system.

4.1 Portfolio-based search

Half-checking propagators naturally leads to a incomplete search. In many cases
this may be ok, but sometimes a user would like to know that all solutions
have been found, that no solution exists, or that the optimal solution has been
found. Using a cooperative portfolio solver combining an incomplete search with
a complete search solves this, such as in the Failure Directed Search [56] used
in the CP Optimizer [27] system, as is explored in [16] for scheduling problems
where portfolios with some incomplete assets are used.

It is important to indicate to the portfolio system used that the asset with
half-checking propagators is not a complete search method. If it is not possible
to inform the system that an asset is incomplete, the resulting combined search
may wrongly indicate that it is complete. In Gecode, returning false from the
function called to set up the asset indicates that the asset is incomplete.

Half-checking propagators 7

Given several half-checking propagators for constraints in a model, there are
three main ways in which they can be used together in a portfolio system.

Combined All half-checking propagators can be combined in one asset.

Multiple assets For each half-checking propagator, create an asset in the port-
folio that runs the problem with it. This may require too many assets.

Round robin A single asset can be used with a round-robin schedule that upon
re-start switches between the different half-checking propagators to use.

Which strategy to use will depend on the problem at hand, the half-checking
propagators, and the instances to solve. For any particular problem, it will re-
quire experimentation combined with experience in the behaviour of the half-
checking propagators in question.

4.2 No-good recording

A crucial aspect for modern re-starting search is to record no-goods [32,36]. A
no-good is a constraint that describes the search-tree that has been explored
so far, and is added upon re-start. In constraint programming, no-goods are
typically based on negating the conjunction of a set of branching decisions. When
combined with traditional constraint propagation for monotonic propagators,
branching decisions precisely describe the explored part of a search tree. For
weakly-monotonic propagators, the search-tree may not be precisely described
by the no-good, but it is still correct.

In the presence of half-checking propagators, the parts of a search-tree that
have been visited may contain solutions that were removed. Thus, a no-good
from a search using half-checking propagators is not globally valid. It is still
useful in the search using that half-checking propagator, but if it is used in an
asset that claims to be complete, this will no longer be true.

Consider again the fail propagator from Example 1. Given a portfolio search
with one asset a traditional and complete search, and one asset using fail. As
soon as the latter is run it will fail and be done. Recording the no-good and
posting it in the traditional asset will abort the search since the no-good would
rule out the whole search tree.

4.3 Lazy clause generation

In lazy clause generation solvers [41], a propagator explains its deductions using
clauses. There is nothing inherently problematic about combining half-checking
propagators and lazy clause generation. One interesting aspect, is that a simple
half-checking propagator that does some very mild extra propagation may pro-
duce clauses that are later on used in the no-good explanation clauses generated
on failure, and may thus end up being used in a wider context.

For some half-checking propagators, such as the removal of crossing edges
described in Section 6, generating good explanations is easy. For others, such
as the approximation based upper bound computation in Section 7, useful ex-
planations can be generated if the approximation produces a witness solution.

8 M. Z. Lagerkvist and M. Rattfeldt

However, for some half-checking propagators such as the heuristic based filtering
in Section 8, meaningful explanations may be quite hard to produce.

4.4 Testing of propagators

Propagators are complicated pieces of code, and propagator-specific testing is
naturally needed to increase the confidence that a constraint programming sys-
tem produces the correct results in addition to standard testing of algorithms.
Unfortunately, half-checking propagators make the job of testing harder, since
there are fewer guarantees that we can rely on.

Testing in the Gecode system is based on combining initial domains with
a constraint checker for assignments used as an oracle. A constraint checker is
typically a much simpler piece of code to write than the propagator under test.
For all assignments in the initial domains, the testing system then removes values
towards that assignment, running the propagator under test intermittently. If the
assignment is in the constraint/validated by the check, the propagator should
not remove the assignment, and otherwise the search should eventually fail. The
whole idea relies on weak monotonicity, which half-checking propagators do not
have. In addition, propagators may opt-in for extended checking of bounds and
domain consistency, neither of which are useful to a half-checking propagator.

In [1] metamorphic testing is used to test constraint propagators. The idea is
to use an extensional constraint with a table propagator as a validation propaga-
tor. A test consists of running original propagator and the validation propagator,
and then comparing the resulting search trees. Again, the fact that a propagator
must be weakly monotonic and checking are crucial properties here.

A similar idea is explored in SolverCheck [19]: initial domains and a con-
straint checker are used to generate a list of valid assignments. These assign-
ments are then used to build reference propagators, including weakening them
to build bounds-consistent propagators. Propagation of the propagator under
test is compared with the simple reference propagator. Again the assumption is
naturally that propagators are correct, and will not remove solutions.

Since half-checking propagators are allowed to remove solutions, none of the
above testing strategies will work. However, there are some things that we could
test for, namely the half-checking property. For example, using the Gecode test-
ing strategy it is possible to adjust it to only check that a solution accepted by
the propagator was also verified by the checker as being valid.

Some half-checking propagators use reasoning that is only valid for optimal
assignments for the constraint (e.g., the propagators in Sections 6 and 7). For
such propagators, the Gecode testing framework can be used as-is specifically
for optimal assignments.

5 The cost-circuit constraint and TSP

In the following three sections, examples of general techniques and strategies to
use when implementing half-checking propagators are given. For each one, an

Half-checking propagators 9

algorithm is proposed for the cost-circuit constraint. This section describes
the constraint and the Travelling Salesperson Problem that it is used for. The
three half-checking propagators introduced are evaluated in Section 9.

5.1 Theory

Let G = (V, E) be a graph counsisting of a set of vertices or nodes V' and a set of
edges £ C V x V indicating which edges are connected. The graph is complete
if E =V xV, ie., all nodes are connected to all other nodes. The graph may
be directed or undirected. A path of length k in a graph is a sequence of nodes
(v1, v, ...v%) where Vie1. g—1. (v;, vix1) € E. A path is a circuit when (vg,v1) €
E. When all nodes are unique it is called a simple path and a cycle or a simple
circuit. When a simple path or a simple circuit covers all the nodes (k = |V]),
it is called Hamiltonian, and finding such are one of the classical NP-complete
problems [31]. A graph is connected when there exists a path between all pairs of
nodes. A tree is a graph that is connected and has no cycles. A weight function
w is a function from edges to real numbers (w € E — R), and most often to
non-negative real numbers. It is symmetric if V,, y,evw((v1,v2)) = w((va, v1)).
A weight function respects the triangle inequality when Vi, 4, vaevw({v1,v3)) <
w({v1,v2)) + w({ve, v3)). Given a graph G = (V, E) and a weight function w, a
minimum spanning tree (MST) M = (V,T) is a tree with the same nodes as the
graph, with 7' C E, and with a minimum weight.

The Travelling Salesperson Problem (TSP) is the problem of given a graph
G = (V,E) and a weight function w, find a Hamiltonian circuit for the graph
with minimum weight. This is the natural weighted extension of the Hamiltonian
circuit problem. It is common to require that the graph for a TSP is complete;
a missing edge can be modelled as an arbitrary large weight. If the nodes of
the graph have positions and the weight is defined as the distance between the
nodes, it is a Fuclidean TSP. The TSPLIB [46] is a collection of 110 real-world
TSP instances, with 77 using Euclidean 2D-distance.

5.2 TSP in constraint programming

The circuit(S) constraint models the Hamiltonian circuit problem using an
array of successor variables S, where S; = j indicates that j is the successor
of ¢ in the circuit. The cost-circuit(S,w,c) is the same, with the variable ¢
representing the total cost of the circuit according to the weight function w.

The circuit constraint is one of the classical global constraints in constraint
programming [35, 3]. Since the base problem is NP-complete, filtering algorithms
are focused on effective but not complete filtering. The base filtering is handled
by the embedded implied all different(S), with additional removal of edges
that would lead to circuits smaller than |S| (subtour elimination). In addition,
many other structural filters have been identified and propagated (e.g., [49, 17]).
For the weighted variant, there have been recent advances above the basic filter-
ing, for example in [4] and [28].

10 M. Z. Lagerkvist and M. Rattfeldt

The above propagation algorithms are all limited by the fact that no correct
value may be removed. State of the art TSP solvers such as Concorde [9] can do
more, since the goal is to find a single optimal solution, not all possible solutions.

In constraint programming, the choice of the branching heuristic is key. For
TSP, several different heuristics have been proposed [13, 28], with no clear win-
ner. Here, we will focus on the Warnsdorff heuristic [57] for the Knights tour
problem (and more generally, the Hamiltonian path problem). The heuristic is,
when cast in constraint programming terms, comprised of two parts. The first
is the variable ordering: assigning variables along a path that is built up in-
crementally. The second is the value ordering: preferring to go to nodes with
the lowest out-degree. Adjusted for the case of complete graphs with distances,
the out-degree is less important and using the minimum distance becomes more
important.

6 Technique: Dominating solutions

When solving a constraint programming problem it is common to see that one
solution may dominate another solution [23], either because of symmetries or
because of one solution having better cost. Propagation for symmetries is com-
mon [15], as is more global views for symmetry breaking [39]. For cost-dominating
solutions, there is less opportunities for incorporating the domination relation
into propagators, since it is typically quite specialized and will not behave as a
traditional propagator. This is a clear opportunity to apply half-checking prop-
agators.

6.1 No Crossing Lines

In a pure Euclidean TSP over a complete graph with no side-constraints, a
property that always holds is that in a optimal solution there are no crossing
lines: given two crossing lines (s1,e;) and (s, es), they can be replaced with
(s1,e2) and (s2, e1), which will have the same or lower weight. Thus, any solution
that contains crossing lines will be dominated by a solution in which the crossing
lines are un-crossed. For an edge e, let cl(e) C E be the set of lines that cross it.

Using this observation, we can design our first interesting half-checking prop-
agators, which we call nc1(S) for No Crossing Lines. The key observation is that
given an assignment that includes an edge e in the solution, we known that in no
optimal solution where e is used (if any such exist), are any of the lines in cl(e)
used. Note that there may be no optimal solution including the edge e. Given
an assignment S; = 7, for all edges (k,l) € cl((S;, S;)), propagate Si # .

For a solution that uses Warnsdorff’s rule for variable selection, it is possible
to choose a simpler filtering called ncl-path(S, f). The propagator follows the
Warnsdorff path from the starting node f to the last known node in the path,
and removes any outgoing edges from that node that cross the fixed path. To
avoid unnecessary failures, the propagator avoids pruning if it would directly
cause a failure (similar to the recent idea of non-failing propagators for LNS [5]).

Half-checking propagators 11

Stronger reasoning using crossing lines is also possible. For a node i with do-
main dg,, any edge crossing all remaining outgoing edges from 7 can be removed
((k,1) € Nueds, cl({Si,v))). We have not implemented this stronger propagation.

Implementation. Implementing ncl requires a fast and efficient look-up of the
cl sets. Since the graph is fixed, we pre-compute this information. In a complete
TSP with n nodes, the number of edges is n?, which means that the number of
crossing lines is O (n4), a very large number for even a modest number of cities.
Thus, the propagator can only be used for quite small instances.

For ncl-path, the crossing lines are computed on the fly instead. Along
the Warnsdorff path, n assignments will be made, and for each assignment O(n)
other edges need to be considered. Thus, along a path a maximum of O(n?) pairs
of edges are considered. This is much less taxing than the full ncl propagation.

To speed up the computation of the crossing lines, a spatial index is used
to make geometric look-ups. Our index is based on the STR [37] construction
of R-trees [24]. We adjusted it in two ways. The first is to make binary sub-
divisions recursively. The second is to first sort objects based on width/height,
and then on position. This strategy is useful since very long edges that cover
most other edges are pushed to one side of the tree. Using this ordering instead
of the normal STR ordering gave a small but significant speed-up.

7 Technique: Heuristic bounds

For many hard problems in computer science, there are algorithms defined that
create good but not provably optimal solutions. Such algorithms are often con-
structive, producing a witness solution for the bound.

Bounds are typically used in constraint programming propagators for the
worst case, i.e., finding the lowest and the highest weight possible. The difference
here is that we instead strive to give good and tight upper-bounds based on a
best-effort to find a solution to a single constraint. Naturally, such bounds may
be invalid in the presence of other constraints in the model, but if they are valid,
they will help guide propagation. Note that filtering the upper bound for an
optimization variable is not effective, since it is bound from above by the search.

7.1 Christofides-Serdyukov bounds propagation

The classical approximation algorithm for a metric TSP (such as Euclidean
TSPs) is the Christofides-Serdyukov algorithm [8,51]. The algorithm is defined
for a complete graph G = (V, E) with Euclidean weights w. The idea is to find
a minimum spanning tree of the graph, and augment it with a minimum weight
matching among the nodes with odd degree in it. Given this graph, an Euler
circuit skipping visited nodes represents the approximation and is at most 1.5
times the length of the optimal circuit. The Christofides-Serdyukov algorithm

12 M. Z. Lagerkvist and M. Rattfeldt

is very popular as a reasonably simple algorithm that gives a good bound®. For
example, it is implemented as a stand-alone TSP solver in OR Tools [21].

We propose the cbp(S,w, ¢) bounds propagator, that works as follows. Let
Gs = (V,Eg) be the current graph induced by the S variables, with G the
original graph. For simplicity, we treat the graph as undirected. Our algorithm
proceeds as follows

— Find a spanning tree of Gg, Mg, with the fixed edges in .S included.

— Let O be the set of edges with odd degree in Mg.

— Find a mazimal matching in Gg for the edges in O, and add to Mg.

For the nodes not matched in the previous step, find a matching using the
edges in G and add to Mg.

Construct an Euler circuit in Mg, and follow it, skipping any node that has
been used before with the corresponding edge in F (even if it is not in Eg).
— Adjust the upper bound of ¢ to be at most the weight of the found circuit.

The above algorithm tries as far as possible to use only edges in the graph
Gg. If only such edges are used, then the upper bound represents a solution to
the sub-problem. Otherwise, the best remaining tour may have a larger cost.

Implementation The implementation of the cbp propagators follows the outline
above. The spanning tree is found using a variant of Kruskals algorithm [34]"
First all fixed edges are added to the tree, and then the edges in the graph are
traversed in increasing order. For this, our graphs keep a list of all the edges in
increasing weight order. If |E5| > 1| E|, then this list is used with a filter to check
for validity, otherwise a new list is constructed from the current domains. The
constant i was determined through experimentation, and needs to be adjusted
for a specific implementation. Finding the Euler walk is done using Hierholzers
algorithm [26], with the stack-based formulation.

Instead of the complete minimum weight matching used in Christofides-
Serdyukov, a simple greedy algorithm is used instead. This is because imple-
menting and running a maximal matching algorithm such as Edmonds algo-
rithm [12] is both complicated and time-consuming. An approximate solution
here may give a higher bound, but never a wrong one.

8 Technique: Heuristic deductions

This is the most general technique, where heuristic algorithms are used to make
inferences and deductions that may or may not be true.

5 The 3/2 approximation bound has been the best known since 1976, with a recent
pre-print the first to give a better bound at 3/2 — e for some € > 10%¢ [30].

" It is also be possible to adapt either Bortivka’s algorithm [6,40] by adding all fixed
edges as the first step or the Jarnik-Prim-Dijkstra algorithm [29,44, 11, 40] by ex-
tending the growing tree with fixed edges when they become adjacent. For Euclidean
TSPs, it is possible to find the MST in O(|V|log|V]) using the Delauney triangula-
tion [10] as the graph [52] using one of the previously mentioned algorithms.

Half-checking propagators 13

8.1 Heuristic 1-tree propagation

As discussed in [25,4, 28], a 1-tree is a very useful structure for analysing prop-
erties of graphs when searching for weighted Hamiltonian circuits. Formally, a
1-tree for a graph G = (VE) and a node n; is a spanning tree for the graph
V\{m}, E\ {{(n,n)|n =n1Vn' =ny}) along with a set of two edges from n;
to the rest of the graph: {(n,n1), (n1,n’)}. A minimum 1-tree is a 1-tree with
minimum weight. A circuit is a 1-tree for any choice of node n, in the graph.

Our one-tree propagator starts by choosing a node n1 to use as the dedicated
node, after which a 1-tree is computed. Three rules are used: Update the lower
bound of the cost with the cost of the 1-tree; If the 1-tree is a circuit, set this as
the solution; For some node with degree > 2 in the spanning tree part, remove the
longest of the incident edges. The latter idea is inspired by Held and Karps [25]
techniques from MIP formulations of the TSP problem, where the residual costs
of the edges in such nodes are manipulated iteratively.

The choice of n; determines the bound. As such, the node with the largest
sum of its two smallest incident edges gives the strongest bounds propagation.

Implementation. To find a 1-tree, the implementation uses an algorithm based on
Kruskals algorithm similar to the implementation of the spanning tree algorithm
in 7.1. The main difference is that the special node n; is given as an additional
argument, and the algorithm returns a spanning tree for V'\ {n;}, and two edges
incident to np. First all fixed edges are added, either to the spanning tree or to
the ny edges. While processing edges to build up the spanning tree, if an edge
is incident to nq add it to that set unless it already contains 2 edges. When the
spanning tree is constructed, we may still not have 2 edges in the n; set, and
if so add the smallest. Note that the algorithm is only executed after normal
propagation for the circuit constraint has been done. Thus, we can assume that
there are at most 2 fixed edges incident to n.

9 Evaluation

Our implementation® is done using the Gecode [18] constraint programming
system, version 6.2.0. The main constraint in the model is cost-circuit, along
with an inverse constraint to get variables representing the predecessors also.
The main branching heuristic used is the Warnsdorff heuristic for selecting the
variable to branch on with randomized starting nodes, and for values selecting
the value with min weight (slightly randomized, inspired by [2]). Instances are
read from TSPLIB files. Our experiments are run on a a Macbook Pro 15 with
a 6-core 2.7 GHz Intel Core i7 processor and 16 GiB memory. The experiments
are not for deciding the best way to solve a TSP using constraint programming,
the aim is to demonstrate that the techniques adds filtering.

Computing the crossing lines data-structure from Section 6.1 quickly starts
to get costly. At around 50 nodes, it takes 0.25-0.3 seconds and at around 100

8 Available at https://github.com/zayenz/half-checking-propagators

14 M. Z. Lagerkvist and M. Rattfeldt

ncl-path cbp one-tree All

max S min me

5
g
&
%
19
el
5
&
%

Instance S mi

S min max

berlin52 99.54% 15.83% 99.95% 88.02%

st70 99.87% = = = = 13.04% 99.97% 79.89% = 99.85% 79.89% 13.04%
eil51 99.61% = = = = 17.39% 99.95% 90.57% = 99.57% 90.57% 17.39%
eil76 = = = = = 14.82% 99.98% 93.84% = 99.98% 93.84% 14.82%
eill01 99.65% = = = = 11.72% 99.99% 93.78% = 99.63% 93.78% 11.72%
1lin105 99.84% = = = = 7.30% 99.99% 61.94% = 99.83% 61.94% 7.30%
1in318 = = = = = 4.87% = 66.32% = = 66.32% 4.87%
pr76 99.89% = = = = 10.74% = 76.25% = 99.89% 76.25% 10.74%
prlo7 = = = = = 5.83% = 63.71% = = 63.71% 5.83%
prl24 99.58% = = = = 5.80% = 73.48% = 99.58% 73.48% 5.80%
prl36 99.99% = = = = 8.08% 1 L L L L

prl44 = = = = = 5.50% = 42.42% = = 42.42% 5.50%
prl52 99.40% = 99.49% = = 4.71% = b58.93% = 99.40% 58.93% 4.71%

99.49% 88.02% 15.83%

Table 1. Propagator filtering strength. Reported is the reduction when using the
propagators ncl-path, cbp, one-tree, and all combined on the domains size of S and
the min and max cost after assigning 10%. = means no reduction, 1| means a failure.

nodes it takes 0.8-1.1 seconds. However, for 1in318 with 318 nodes, it takes
more than 5 minutes to compute, which is clearly too long to be useful. In the
following, we will skip the full version since it is clearly impractical.

Table 1 reports the filtering improvements for our proposed propagators.
Five variants are run simultaneously, assigning 10% of the nodes in the path.
The variants use the standard model, along with variants with the propagators
ncl-path, cbp, one-tree, and all three combined. The reported value is the
reduction in the sum domain size of the successor variables S, and the adjustment
of the minimum and maximum costs compared with the standard model. As can
be seen, our propagators have complementary and strong filtering.

Finding good solutions quickly is naturally desired. Unfortunately, the im-
proved filtering does not translate into better solving directly. For some test-
cases, our propagators give modestly better results for solving under time-limits.
However, we believe that a main issue is that it is not possible yet to generate
no-goods local to an asset in Gecode. Further investigation is clearly needed, as
is testing other problems using the cost-circuit constraint.

10 Related work

The requirement of correctness for propagators have been a constant in con-
straint programming since the field began. Still, there are a few techniques and
approaches that have touched on similar ideas.

The most similar technique to half-checking propagators is probably stream-
lining constraints [20]. The idea is to post additional constraints in a model in
order to focus on certain subsets of solutions that exhibit some kinds of regular-
ities. Typically, these are found examining solutions to small instances, and the
added streamliners help find these regularities in larger instances. The idea is
similar to half-checking propagators, in that in order to solve a problem we may
want to rule out potential solutions. In a certain sense, the ncl propagator is a
streamliner constraint, since we focus on the solutions that have the no-crossing

Half-checking propagators 15

lines regularity. On the other hand, the cbp and one-tree propagators we pro-
pose are not easily formulated as streamliners. An additional difference is that
half-checking propagators focus on adding new reasoning for existing constraints,
while streamliner constraints focus on adding new reasoning for models.

The similar approaches of cost propagation [22] and belief propagation [43]
use a domain store that indicates a common cost or belief for each variable-value
pair. Both approaches use the gathered information to guide the search (a non-
backtracking search for [22]). As remarked by Pesant in [43] a value that gets a
belief very close to 0 (or perhaps even 0, due to rounding errors), is very unlikely
to be in any solution, and thus it might be beneficial to actually remove these
values. Such a filtering rule would be a half-checking propagator.

In [4], TSP instances tested are pre-processed with tight bounds based on
standard state-of-the-art heuristics. While it is not clearly stated, this pre-
processing is of course not valid if there are any other constraints in the instances
than just a cost-circuit. This kind of bounds updates is similar to what we
propose in Section 7, although we use it continuously during search.

In [50], Sellmann and Harvey propose using heuristic constraint propagation.
While it may sound similar to half-checking propagators and especially the tech-
niques we present, the crucial difference it that Sellmann and Harvey focus on
incomplete, but still correct propagation.

11 Conclusions

This paper has introduced half-checking propagators, a new variant of propaga-
tors that are not required to be correct. Lifting this restriction opens up new
possibilities for designing propagation algorithms. The goal is to guide search
towards good solutions. To regain completeness, we paired models with half-
checking propagators in a portfolio with standard models.

A detailed description on how to integrate half-checking propagators into
modern constraint programming systems was given. To showcase the idea, three
techniques for designing half-checking propagators were presented and made
concrete with an application to the cost-circuit constraint.

The most important future work is of course to make computational stud-
ies on how to best use half-checking propagators. In order to make this as fair
as possible, an improvement to Gecode that would allow us to record no-goods
locally in assets with half-checking propagators is needed. There are many ex-
amples of hard problems, where half-checking propagators could be useful, with
the problems tested in [5] an interesting list to start with.

We think that scheduling problems may be an interesting future area of
research for new half-checking propagators. Also, studying automatically gener-
ated streamliner constraints [58,54] could be an interesting source of ideas for
new half-checking propagators.

Acknowledgments Thanks to the anonymous reviewers of this paper, which
helped improve and clarify many points and recommended additional references.

16

M. Z. Lagerkvist and M. Rattfeldt

References

10.

11.

12.

13.

14.

15.

Akgiin, O., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Metamorphic test-
ing of constraint solvers. In: Hooker, J. (ed.) Principles and Practice of Constraint
Programming. pp. 727-736. Springer International Publishing, Cham (2018)
Archibald, B., Dunlop, F., Hoffmann, R., McCreesh, C., Prosser, P., Trimble, J.: Se-
quential and parallel solution-biased search for subgraph algorithms. In: Rousseau,
L., Stergiou, K. (eds.) Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research - 16th International Conference, CPAIOR 2019,
Thessaloniki, Greece, June 4-7, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11494, pp. 20-38. Springer (2019). https://doi.org/10.1007/978-3-030-
19212-9.2

Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP.
Mathematical and Computer Modelling 20(12), 97 — 123 (1994).
https://doi.org/https://doi.org/10.1016/0895-7177(94)90127-9

Benchimol, P., van Hoeve, W.J., Régin, J., Rousseau, L., Rueher, M.: Im-
proved filtering for weighted circuit constraints. Constraints 17(3), 205-233 (2012).
https://doi.org/10.1007/s10601-012-9119-x

. Bjordal, G., Flener, P., Pearson, J., Stuckey, P.J., Tack, G.: Solving satisfaction

problems using large-neighborhood search. In: Simonis, H. (ed.) Principles and
Practice of Constraint Programming — CP 2020 (2020)

Boruvka, O.: O jistém problému minimdlnim. Prace Moravské piirodovédecké
spoleénosti, Mor. ptirodovédeckd spoleénost (1926)

Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) Programming Languages: Im-
plementations, Logics, and Programs. pp. 191-206. Springer Berlin Heidelberg,
Berlin, Heidelberg (1997)

Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman
problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie
Mellon University (1976)

Cook, W.: Concorde TSP Solver, http://www.math.uwaterloo.ca/tsp/
concorde.html

Delauney, B.: Sur la sphire vide. A la mémoire de Georges Voronoi. Izvestia
Akademia Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7, 793—
800 (1934)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269271 (1959)

Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449—
467 (1965)

Fages, J.G., Lorca, X., Rousseau, L.M.: The salesman and the tree:
the importance of search in CP. Constraints 21(2), 145-162 (Apr 2016).
https://doi.org/10.1007/s10601-014-9178-2

Feydy, T., Somogyi, Z., Stuckey, P.J.: Half reification and flattening. In: Lee, J.
(ed.) Principles and Practice of Constraint Programming — CP 2011. pp. 286-301.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, 1., Pearson, J., Walsh,
T.: Breaking row and column symmetries in matrix models. In: Principles and
Practice of Constraint Programming - CP 2002, 8th International Conference, CP
2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings. pp. 462-476 (2002).
https://doi.org/10.1007/3-540-46135-3_31

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Half-checking propagators 17

Fontaine, D., Michel, L., Van Hentenryck, P.: Parallel composition of scheduling
solvers. In: Quimper, C.G. (ed.) Integration of Al and OR Techniques in Constraint
Programming. pp. 159-169. Springer International Publishing, Cham (2016)
Francis, K.G., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1),
1-29 (Jan 2014). https://doi.org/10.1007/s10601-013-9148-0

Gecode team: Gecode, the generic constraint development environment (2018),

http://www.gecode.org/

Gillard, X., Schaus, P.; Deville, Y.: SolverCheck: Declarative testing of constraints.
In: Schiex and de Givry [47], pp. 565-582. https://doi.org/10.1007/978-3-030-
30048-7_33

Gomes, C.P., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
Principles and Practice of Constraint Programming - CP 2004, 10th International
Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceed-
ings. Lecture Notes in Computer Science, vol. 3258, pp. 274-289. Springer (2004).
https://doi.org/10.1007/978-3-540-30201-8_22

Google: OR-Tools (2019), https://developers.google.com/optimization
Grohe, B., Wedelin, D.: Cost propagation — numerical propagation for optimization
problems. In: Perron, L., Trick, M.A. (eds.) Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. pp. 97-111.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Guns, T., Stuckey, P.J., Tack, G.: Solution dominance over constraint satisfac-

tion problems. In: Leo, K. (ed.) The 17th workshop on Constraint Modelling and
Reformulation (2018), http://arxiv.org/abs/1812.09207

Guttman, A.: R-trees: A dynamic index structure for spatial searching. SIGMOD
Rec. 14(2), 47-57 (Jun 1984). https://doi.org/10.1145/971697.602266, https://
doi.org/10.1145/971697.602266

Held, M., Karp, R.M.: The traveling-salesman problem and minimum span-
ning trees: Part ii. Mathematical Programming 1(1), 6-25 (Dec 1971).
https://doi.org/10.1007 /BF01584070

Hierholzer, C., Wiener, C.: Ueber die méglichkeit, einen linienzug ohne wiederhol-
ung und ohne unterbrechung zu umfahren. Mathematische Annalen 6(1), 30-32
1873

%BM:) IBM ILOG CP Optimizer (2019), https://www.ibm.com/analytics/
cplex-cp-optimizer

Isoart, N., Régin, J.: Integration of structural constraints into TSP models. In:
Schiex and de Givry [47], pp. 284-299. https://doi.org/10.1007/978-3-030-30048-
717

Jarnik, V.: O jistém problému miniméalnim. Praca Moravské Prirodovedecké
Spolecnosti 6, 57-63 (1930)

Karlin, A.R., Klein, N.,; Gharan, S.O.: A (slightly) improved approximation algo-
rithm for metric TSP (2020), https://arxiv.org/abs/2007.01409

Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85-103. Springer
US, Boston, MA (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Veloso, M.M., Kamb-
hampati, S. (eds.) Proceedings, The Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial Intel-
ligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. pp. 390-396.
AAAT Press / The MIT Press (2005), http://www.aaai.org/Library/AAAI/2005/
aaai05-062.php

Knaster, B.: Un théoréme sur les fonctions d’ensembles. Annales Soc. Polonaise 6,
133—134 (1928)

18

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

M. Z. Lagerkvist and M. Rattfeldt

Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society 7(1), 48-50 (1956)
Lauriere, J.L.: A language and a program for stating and solving
combinatorial problems. Artificial Intelligence 10(1), 29 - 127 (1978).
https://doi.org/https://doi.org/10.1016 /0004-3702(78)90029-2

Lee, J.H.M., Schulte, C., Zhu, Z.: Increasing nogoods in restart-based search. In:
Schuurmans, D., Wellman, M. (eds.) AAAI Conference on Artificial Intelligence.
pp. 3426-3433. AAAIT Press, Phoenix, AZ, USA (Feb 2016), https://chschulte.
github.io/papers/leeschulteea-aaai-2016.html

Leutenegger, S., Lopez, M., Edgington, J.: STR: A simple and efficient
algorithm for r-tree packing. Proc. VLDB Conf pp. 497-506 (05 1997).
https://doi.org/10.1109/ICDE.1997.582015

Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1),
99-118 (1977)

Mears, C., de la Banda, M.G., Demoen, B., Wallace, M.: Lightweight
dynamic symmetry breaking. Constraints 19(3), 195-242 (2014).
https://doi.org/10.1007 /s10601-013-9154-2

Negetril, J., Nesetrilovd, H.: The origins of minimal spanning tree algorithms—
Boruvka and Jarnik. Documenta Mathematica pp. 127-141 (2012)

Ohrimenko, O., Stuckey, P., Codish, M.: Propagation = lazy clause generation. In:
Bessiere, C. (ed.) Proceedings of the 13th International Conference on Principles
and Practice of Constraint Programming,. LNCS, vol. 4741, pp. 544-558 (2007)
Perron, L.: Search procedures and parallelism in constraint programming. In: Jaf-
far, J. (ed.) Principles and Practice of Constraint Programming — CP’99. pp. 346—
360. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

Pesant, G.: From support propagation to belief propagation in constraint program-
ming. J. Artif. Intell. Res. 66, 123-150 (2019). https://doi.org/10.1613/jair.1.11487
Prim, R.C.: Shortest connection networks and some generalizations. The Bell Sys-
tem Technical Journal 36(6), 1389-1401 (1957)

Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org
Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. INFORMS Journal
on Computing 3(4), 376-384 (1991), http://dblp.uni-trier.de/db/journals/
informs/informs3.html#Reinelt91

Schiex, T., de Givry, S. (eds.): Principles and Practice of Constraint Programming
- 25th International Conference, CP 2019, Stamford, CT, USA, September 30 -
October 4, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11802.
Springer (2019). https://doi.org/10.1007/978-3-030-30048-7

Schulte, C.: Programming Constraint Services, Lecture Notes in Artificial Intelli-
gence, vol. 2302. Springer-Verlag (2002), https://link.springer.com/book/10.
1007/3-540-45945-6

Schulte, C., Tack, G.: Weakly monotonic propagators. In: Gent, I. (ed.) Fifteenth
International Conference on Principles and Practice of Constraint Programming.
Lecture Notes in Computer Science, vol. 5732, pp. 723-730. Springer-Verlag, Lis-
bon, Portugal (Sep 2009). https://doi.org/10.1007/978-3-642-04244-7_56
Sellmann, M., Harvey, W.: Heuristic constraint propagation. In: Hentenryck, P.V.
(ed.) Eighth International Conference on Principles and Practice of Constraint Pro-
gramming. Lecture Notes in Computer Science, vol. 2470, pp. 738-743. Springer-
Verlag, Ithaca, NY, USA (Sep 2002). https://doi.org/https://doi.org/10.1007/3-
540-46135-3_55

51.

52.

53.

54.

55.

56.

57.

58.

Half-checking propagators 19

Serdyukov, A.L.: O nekotorykh ekstremal’'nykh obkhodakh v grafakh (on some
extremal walks in graphs). Upravlyaemye sistemy 17, 76-79 (1976)

Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th Annual
Symposium on Foundations of Computer Science. p. 151-162. SFCS ’75, IEEE
Computer Society, USA (1975). https://doi.org/10.1109/SFCS.1975.8

Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.F. (eds.) Fourth International Con-
ference on Principles and Practice of Constraint Programming. Lecture Notes in
Computer Science, vol. 1520, pp. 417—431. Springer-Verlag, Pisa, Italy (1998)
Spracklen, P., Dang, N., Akgiin, O., Miguel, I.: Automatic streamlining for con-
strained optimisation. In: Schiex, T., de Givry, S. (eds.) Principles and Practice of
Constraint Programming - 25th International Conference, CP 2019, Stamford, CT,
USA, September 30 - October 4, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11802, pp. 366-383. Springer (2019). https://doi.org/10.1007/978-3-
030-30048-7_22

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics 5(2), 285-309 (1955), https://projecteuclid.org: 443/
euclid.pjm/1103044538

Vilim, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: CPAIOR ’15: Proceedings of the 12th International Conference
on Integration of AT and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems. Springer-Verlag (2015)

von Warnsdorff, H.C.: Des rosselsprungs einfachste und allgemeinste 16sung. Th.
G. Fr. Varnhagensehen Buchhandlung (1823)

Wetter, J., Akgiin, O., Miguel, L.: Automatically generating streamlined constraint
models with Essence and Conjure. In: Pesant, G. (ed.) Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9255, pp. 480—496. Springer (2015). https://doi.org/10.1007/978-3-319-23219-
5.34

